RepRap!

ian-moulded-reprap

Descrição:

Look at your computer setup and imagine that you hooked up a 3D printer. Instead of printing on bits of paper this 3D printer makes real, robust, mechanical parts. To give you an idea of how robust, think Lego bricks and you’re in the right area. You could make lots of useful stuff, but interestingly you could also make most of the parts to make another 3D printer. That would be a machine that could copy itself.

RepRap is short for Replicating Rapid-prototyper. It is the practical self-copying 3D printer shown on the right – a self-replicating machine. This 3D printer builds the parts up in layers of plastic. This technology already exists, but the cheapest commercial machine would cost you about €30,000. And it isn’t even designed so that it can make itself. So what the RepRap team are doing is to develop and to give away the designs for a much cheaper machine with the novel capability of being able to self-copy (material costs are about €500). That way it’s accessible to small communities in the developing world as well as individuals in the developed world. Following the principles of the Free Software Movement we are distributing the RepRap machine at no cost to everyone under the GNU General Public Licence. So, if you have a RepRap machine, you can use it to make another and give that one to a friend…

The RepRap project became widely known after a large press coverage in March 2005, though the idea goes back to a paper on the web written by Adrian Bowyer on 2 February 2004.

RepRap Version 1.0 “Darwin” can be built by anyone now – see the Make your own RepRap link there or on the left, and for ways to get the bits and pieces you need, see the Obtaining Parts link.”

Mais na Wikipedia.  Parte importante:

Limitations of self-replication

Although it appears likely that RepRap will be able to autonomously construct much of its mechanical components in the near future using fairly low-level resources, it would still require an external supply of several currently non-replicable components such as sensors, stepper motors or microcontrollers. A certain percentage of such devices will have to be produced independently of the RepRap self-replicating process. The goal is, however, to asymptotically approach a 100% replication over a series of evolutionary generations. As one example, from the onset of the project the RepRap team has explored a variety of approaches to integrating electrically conductive media into the product. Success on this initiative should open the door to the inclusion of connective wiring, printed circuit boards and possibly even motors in RepRapped products[10]. Variations in the nature of the extruded, electrically conductive media could produce electrical components with different functions than pure conductive traces not unlike what was done in John Sargrove’s sprayed-circuit process of the 1940s (also known as Electronic Circuit Making Equipment or ECME).” [grifo meu]

Pois é.